Asymmetric Dark Matter Stability from Continuous Flavor Symmetries

Fady Bishara

Fermilab & University of Cincinnati

Fermilab September 11th, 2014

- Motivation
- > ADM, DM stability, and flavor
- Asymmetric Dark Matter (ADM) mass
- > ADM lifetime
- Mediator models
- Experimental constraints

- Motivation
- > ADM, DM stability, and flavor
- Asymmetric Dark Matter (ADM) mass
- > ADM lifetime
- Mediator models
- Experimental constraints

- Motivation
- > ADM, DM stability, and flavor
- Asymmetric Dark Matter (ADM) mass
- > ADM lifetime
- Mediator models
- Experimental constraints

- Motivation
- > ADM, DM stability, and flavor
- Asymmetric Dark Matter (ADM) mass
- > ADM lifetime
- Mediator models
- Experimental constraints

- Motivation
- > ADM, DM stability, and flavor
- > Asymmetric Dark Matter (ADM) mass
- > ADM lifetime
- Mediator models
- Experimental constraints

- Motivation
- > ADM, DM stability, and flavor
- Asymmetric Dark Matter (ADM) mass
- > ADM lifetime
- Mediator models
- Experimental constraints

Motivation

- There is overwhelming evidence for the existence of DM yet the SM model lacks a candidate
- ightharpoonup There is a coincidence $\Omega_\chi/\Omega_B=5.4$; could there be a link?
- We expect New Physics (NP) at the TeV scale to address the hierarchy problem
- However, NP cannot have generic flavor structure
 - Large FCNCs if $\Lambda_{NP} \sim \text{TeV}$ (NP flavor problem)

ADM, DM stability and flavor

There is a vast literature on the topic. Some examples include

ADM

Hooper, March-Russell & West [hep-ph/0410114], Kaplan, Luty & Zurek [aXv:0901.4117], Feldstein & Fitzpatrick [aXv:1003.5662], Dutta & Kumar [aXv:1012.1341], Cohen, Phalen, Pierce & Zurek [aXv:1005.1655], Falkowski, Ruderman & Volansky [aXv:1101.4936]

▶ MFV

Kamenik & Zupan [aXv:1107.0623], Batell, Pradler & Spannowsky [aXv:1105.1781], Batell, Lin & Wang [aXv:1309.4462], SUSY MFV: Csaki, Grossman & Heidenreich [aXv:1111.1239], Monteux & Cornell [aXv:1404.5952]

Agrawal, Blanchet, Chacko & Kilic [aXv:1109.3516], Kumar & Tulin [aXv:1303.0332], Agrawal, Batell, Hooper & Lin [aXv:1404.1373]

Beyond MFV

Agrawal, Blanke & Gemmler [aXv:1405.6709]

The roadmap

- \triangleright Flavor & SM gauge singlet DM charged under $U(1)_{(B-L)}$
 - ⇒ DM is either a Dirac fermion or a complex scalar
- \triangleright Assume that $B \neq 0$ and L = 0 to focus the discussion
- ▷ DM is a color singlet ⇒ carries integer Baryon number
- Will not assume any discrete symmetry to stabilize DM

Goal

A cosmologically stable DM with $\Lambda_{NP} \sim \mathcal{O}(\text{TeV})$

The roadmap

- \triangleright Flavor & SM gauge singlet DM charged under $U(1)_{(B-L)}$
 - ⇒ DM is either a Dirac fermion or a complex scalar
- \triangleright Assume that $B \neq 0$ and L = 0 to focus the discussion
- $hd \ \ \mathsf{DM}$ is a color singlet \Rightarrow carries integer Baryon number

Goal

A cosmologically stable DM with $\Lambda_{NP} \sim \mathcal{O}(\text{TeV})$

ADM mass

Assumptions

- $\triangleright B L$ is a conserved quantum number
- Symmetric component efficiently annihilated

In this case, the ADM mass (with SM field content) is given by 1

$$\textit{m}_{\chi} = \textit{m}_{\textit{p}} \frac{\Omega_{\chi}}{\Omega_{\textit{B}}} \left(\frac{\textit{B}}{\textit{B} - \textit{L}} \right) \left(\frac{\textit{B} - \textit{L}}{\Delta \chi} \right) = (12.5 \pm 0.8 \, \text{GeV}) \frac{1}{(\textit{B} - \textit{L})_{\chi}^{\text{sum}}}$$

where
$$\Delta\chi\equiv(n_\chi-\overline{n}_\chi)/s$$
 and $(B-L)_\chi^{\mathrm{sum}}\equiv\sum_i\hat{g}_\chi^i(B-L)_\chi^i$.

 Fermilab
 ADM Stability
 9/11/2014
 5 / 24

¹Harvey & Turner, Phys.Rev. D42 (1990) 3344-3349; Feldstein & Fitzpatrick, arXiv:1003.5662.

ADM mass in the presence of New Physics (NP)

Fermilab ADM Stability 9/11/2014

6/24

Asymmetric EFT operators

The lowest dimensional asymmetric operators are of the form

$$\mathcal{L} = \sum_{i} \frac{\mathcal{C}_{i}}{\Lambda^{(D_{i}-4)}} \, \chi \, \mathcal{O}_{i}^{\text{SM}}, \label{eq:loss_loss}$$

with
$$\mathcal{O}^{\text{SM}} = \left[u^c\right]^{n_u} \left[d^c\right]^{n_d} \left[q^*\right]^{n_q}$$

and
$$egin{cases} (n_d+n_u+n_q) \mod 3=0 \ n_d-n_u-n_q/2=0 \end{cases}$$

Fermilab ADM Stability 9/11/2014 7 / 24

¹The fields u^c and d^c are the $SU(2)_L$ singlet up and down type quark fields while q is the $SU(2)_L$ doublet quark field in two component spinor notation.

Freeze-out temperature of asymm. operators

$$T_f \sim \left(1.66 imes \sqrt{g_*} \, (16\pi^2)^3 rac{8\pi}{C^2} rac{\Lambda^{12}}{M_{
m pl}}
ight)^{1/11} \simeq 480 \; {
m GeV} \; \left(rac{\Lambda}{1.9 \, {
m TeV}}
ight)^{12/11}$$

- \triangleright The EFT scale $\land > 1.9$ TeV is bounded by indirect detection searches.
- $\,\rhd\,$ Dominated by the 2 \to 5 process.
- \triangleright DM number is conserved below T_f .

To calculate the DM lifetime we must

- Choose the flavor structure. We will consider two flavor breaking scenarios: Minimal Flavor Violation (MFV) and Froggatt-Nielsen (FN)
- Rotate to the mass eigenbasis. We will work in the down mass basis where

$$u^c o u^c_{ exttt{MASS}}, \qquad d^c o d^c_{ exttt{MASS}}, \qquad q = egin{pmatrix} u \ d \end{pmatrix} o egin{pmatrix} V_{ exttt{CKM}} \ u_{ exttt{MASS}} \ d_{ exttt{MASS}} \end{pmatrix}.$$

and the Yukawa matrices are

$$Y_D
ightarrow Y_D^{ ext{diag}}, \quad Y_U
ightarrow V_{ ext{CKM}} Y_U^{ ext{diag}}$$

To calculate the DM lifetime we must

- Choose the flavor structure. We will consider two flavor breaking scenarios: Minimal Flavor Violation (MFV) and Froggatt-Nielsen (FN)
- Rotate to the mass eigenbasis. We will work in the down mass basis where

$$u^c o u^c_{ exttt{MASS}}, \qquad d^c o d^c_{ exttt{MASS}}, \qquad q = \begin{pmatrix} u \\ d \end{pmatrix} o \begin{pmatrix} V_{ exttt{CKM}} \, u_{ exttt{MASS}} \\ d_{ exttt{MASS}} \end{pmatrix}$$

and the Yukawa matrices are

$$Y_D
ightarrow Y_D^{
m diag}, \quad Y_U
ightarrow V_{
m CKM} Y_U^{
m diag}$$

To calculate the DM lifetime we must

- Choose the flavor structure. We will consider two flavor breaking scenarios: Minimal Flavor Violation (MFV) and Froggatt-Nielsen (FN)
- Rotate to the mass eigenbasis. We will work in the down mass basis where

$$u^c o u^c_{ exttt{MASS}}, \qquad d^c o d^c_{ exttt{MASS}}, \qquad q = egin{pmatrix} u \ d \end{pmatrix} o egin{pmatrix} V_{ exttt{CKM}} \, u_{ exttt{MASS}} \ d_{ exttt{MASS}} \end{pmatrix}.$$

and the Yukawa matrices are

$$Y_D
ightarrow Y_D^{
m diag}, \quad Y_U
ightarrow V_{
m CKM} Y_U^{
m diag}$$

To calculate the DM lifetime we must

- Choose the flavor structure. We will consider two flavor breaking scenarios: Minimal Flavor Violation (MFV) and Froggatt-Nielsen (FN)
- Rotate to the mass eigenbasis. We will work in the down mass basis where

$$u^c o u^c_{ exttt{MASS}}, \qquad d^c o d^c_{ exttt{MASS}}, \qquad q = egin{pmatrix} u \ d \end{pmatrix} o egin{pmatrix} V_{ exttt{CKM}} \, u_{ exttt{MASS}} \ d_{ exttt{MASS}} \end{pmatrix}.$$

and the Yukawa matrices are

$$Y_D
ightarrow Y_D^{ ext{diag}}, \quad Y_U
ightarrow V_{ ext{CKM}} Y_U^{ ext{diag}}$$

To calculate the DM lifetime we must

- Choose the flavor structure. We will consider two flavor breaking scenarios: Minimal Flavor Violation (MFV) and Froggatt-Nielsen (FN)
- Rotate to the mass eigenbasis. We will work in the down mass basis where

$$u^c o u^c_{ exttt{MASS}}, \qquad d^c o d^c_{ exttt{MASS}}, \qquad q = egin{pmatrix} u \ d \end{pmatrix} o egin{pmatrix} V_{ exttt{CKM}} \, u_{ exttt{MASS}} \ d_{ exttt{MASS}} \end{pmatrix}.$$

and the Yukawa matrices are

$$Y_D
ightarrow Y_D^{ ext{diag}}, \quad Y_U
ightarrow V_{ ext{CKM}} Y_U^{ ext{diag}}$$

Minimal Flavor Violation¹ (MFV)

hor $\mathcal{L}_{\mathsf{SM}}$ enjoys an enhanced symmetry G_F in the limit $m_q o 0$

$$\triangleright G_F = SU(3)_Q \times SU(3)_U \times SU(3)_D$$

 \triangleright Symmetry is retained if Yukawa matrices are promoted to spurions that transform under G_F as

$$Y_U \sim ({\bf 3}, {\bf \overline{3}}, {\bf 1}), \qquad Y_D \sim ({\bf 3}, {\bf 1}, {\bf \overline{3}})$$

▷ The Yukawa interactions $u^c Y_U^{\dagger} q H$, $d^c Y_D^{\dagger} q H^c$ are then formally invariant under G_F

The SM Yukawas are the only source of flavor breaking.

Fermilab ADM Stability 9/11/2014

10/24

¹D'Ambrosio, Giudice, Isidori & Strumia [hep-ph/0207036]

Minimal Flavor Violation¹(MFV)

ho $\mathcal{L}_{\mathsf{SM}}$ enjoys an enhanced symmetry G_F in the limit $m_q o 0$

$$ho \ G_F = SU(3)_Q \times SU(3)_U \times SU(3)_D$$

 \triangleright Symmetry is retained if Yukawa matrices are promoted to spurions that transform under G_F as

$$Y_U \sim (\mathbf{3}, \overline{\mathbf{3}}, \mathbf{1}), \qquad Y_D \sim (\mathbf{3}, \mathbf{1}, \overline{\mathbf{3}})$$

▷ The Yukawa interactions $u^c Y_U^{\dagger} q H$, $d^c Y_D^{\dagger} q H^c$ are then formally invariant under G_F

The SM Yukawas are the only source of flavor breaking.

Fermilab ADM Stability 9/11/2014

10 / 24

¹D'Ambrosio, Giudice, Isidori & Strumia [hep-ph/0207036]

$$\mathcal{O}_1^{(B=1)} = (\chi \, u^c) (d^c d^c), \quad \mathcal{O}_2^{(B=1)} = (\chi \, q_\rho^*) (d^c \, q_\sigma^*) \epsilon^{\rho \sigma}$$

$$\begin{split} \mathcal{O}_{1}^{(B=1)} = & \left(\chi \, u_{\alpha}^{c} Y_{U}^{\dagger} Y_{D}\right)_{K} \left(d_{N\beta}^{c} d_{M\gamma}^{c}\right) \epsilon^{KNM} \epsilon^{\alpha\beta\gamma} \\ & \rightarrow \left(\chi \, u_{\text{MASS}}^{c} Y_{U}^{\text{diag}\dagger} V_{\text{CKM}}^{\dagger} Y_{D}^{\text{diag}}\right)_{K\alpha} \left([d_{\text{MASS}}^{c}]_{N\beta} \, [d_{\text{MASS}}^{c}]_{M\gamma}\right) \epsilon^{KNM} \epsilon^{\alpha\beta\gamma}, \\ \mathcal{O}_{2}^{(B=1)} = & \left(\chi \, q_{K\alpha i}^{*}\right) \left([d_{\beta}^{c} Y_{D}^{\dagger}]_{N} q_{M\gamma j}^{*}\right) \epsilon^{ij} \epsilon^{KNM} \epsilon^{\alpha\beta\gamma} \\ & \rightarrow \left(\chi \, u_{\text{MASS}}^{*} V_{\text{CKM}}^{\dagger}\right)_{K\alpha} \left([d_{\text{MASS}}^{c} Y_{D}^{\text{diag}\dagger}]_{N\beta} [d_{\text{MASS}}^{*}]_{M\gamma}\right) \epsilon^{KNM} \epsilon^{\alpha\beta\gamma}, \\ \Gamma_{\chi}^{(1)} \sim & \frac{(y_{t} y_{b})^{2}}{8\pi} \left(\frac{m_{\chi}}{\Lambda}\right)^{4} \left(\frac{1}{16\pi^{2}} \frac{m_{t} \Lambda_{\text{QCD}}}{m_{W}^{2}}\right)^{2} \frac{m_{\chi}}{16\pi^{2}} \\ = & 6.6 \cdot 10^{-51} \text{GeV} \left(\frac{y_{b}}{0.024}\right)^{2} \left(\frac{5.3 \cdot 10^{6} \text{TeV}}{\Lambda}\right)^{4}, \\ \Gamma_{\chi}^{(2)} \sim & \frac{|y_{b} V_{ub}|^{2}}{8\pi} \left(\frac{m_{\chi}}{\Lambda}\right)^{4} \frac{m_{\chi}}{16\pi^{2}} = 6.6 \cdot 10^{-51} \text{GeV} \left(\frac{y_{b}}{0.024}\right)^{2} \left(\frac{4.8 \cdot 10^{7} \text{TeV}}{\Lambda}\right)^{4} \end{split}$$

Fermilab ADM Stability 9/11/2014 11 / 24

$$\mathcal{O}_{1}^{(B=1)} = (\chi u^{c})(d^{c}d^{c}), \quad \mathcal{O}_{2}^{(B=1)} = (\chi q_{\rho}^{*})(d^{c}q_{\sigma}^{*})\epsilon^{\rho\sigma}$$

$$\mathcal{O}_{1}^{(B=1)} = \left(\chi \, u_{\alpha}^{c} Y_{U}^{\dagger} Y_{D}\right)_{K} \left(d_{N\beta}^{c} d_{M\gamma}^{c}\right) \epsilon^{KNM} \epsilon^{\alpha\beta\gamma}$$

$$\rightarrow \left(\chi \, u_{\text{MASS}}^{c} Y_{U}^{\text{diag}\dagger} V_{\text{CKM}}^{\dagger} Y_{D}^{\text{diag}}\right)_{K\alpha} \left([d_{\text{MASS}}^{c}]_{N\beta} \left[d_{\text{MASS}}^{c}\right]_{M\gamma}\right) \epsilon^{KNM} \epsilon^{\alpha\beta\gamma},$$

$$\mathcal{O}_{2}^{(B=1)} = \left(\chi \, q_{K\alpha i}^{*}\right) \left([d_{\beta}^{c} Y_{D}^{\dagger}]_{N} q_{M\gamma j}^{*}\right) \epsilon^{ij} \epsilon^{KNM} \epsilon^{\alpha\beta\gamma}$$

$$\rightarrow \left(\chi \, u_{\text{MASS}}^{*} V_{\text{CKM}}^{\dagger}\right)_{K\alpha} \left([d_{\text{MASS}}^{c} Y_{D}^{\text{diag}\dagger}]_{N\beta} \left[d_{\text{MASS}}^{*}\right]_{M\gamma}\right) \epsilon^{KNM} \epsilon^{\alpha\beta\gamma},$$

$$\Gamma_{\chi}^{(1)} \sim \frac{(y_{t} y_{b})^{2}}{8\pi} \left(\frac{m_{\chi}}{\Lambda}\right)^{4} \left(\frac{1}{16\pi^{2}} \frac{m_{t} \Lambda_{\text{QCD}}}{m_{W}^{2}}\right)^{2} \frac{m_{\chi}}{16\pi^{2}}$$

$$= 6.6 \cdot 10^{-51} \text{GeV} \left(\frac{y_{b}}{0.024}\right)^{2} \left(\frac{5.3 \cdot 10^{6} \text{TeV}}{\Lambda}\right)^{4},$$

$$\Gamma^{(2)} \sim \frac{|y_{b} V_{ub}|^{2}}{2\pi^{2}} \left(\frac{m_{\chi}}{\Lambda}\right)^{4} \frac{m_{\chi}}{\Lambda^{2}} = 6.6 \cdot 10^{-51} \text{GeV} \left(\frac{y_{b}}{\Lambda}\right)^{2} \left(\frac{4.8 \cdot 10^{7} \text{TeV}}{\Lambda^{2}}\right)^{4}$$

Fermilab ADM Stability 9/11/2014 11 / 24

$$\mathcal{O}_{1}^{(B=1)} = (\chi u^{c})(d^{c}d^{c}), \quad \mathcal{O}_{2}^{(B=1)} = (\chi q_{\rho}^{*})(d^{c}q_{\sigma}^{*})\epsilon^{\rho\sigma}$$

$$\mathcal{O}_{1}^{(B=1)} = (\chi u_{\alpha}^{c}Y_{U}^{\dagger}Y_{D})_{K}(d_{N\beta}^{c}d_{M\gamma}^{c})\epsilon^{KNM}\epsilon^{\alpha\beta\gamma}$$

$$\rightarrow (\chi u_{\text{MASS}}^{c}Y_{U}^{\text{diag}\dagger}V_{\text{CKM}}^{\dagger}Y_{D}^{\text{diag}})_{K\alpha}([d_{\text{MASS}}^{c}]_{N\beta}[d_{\text{MASS}}^{c}]_{M\gamma})\epsilon^{KNM}\epsilon^{\alpha\beta\gamma},$$

$$\mathcal{O}_{2}^{(B=1)} = (\chi q_{K\alpha i}^{*})([d_{\rho}^{c}Y_{D}^{\dagger}]_{N}q_{N\gamma j}^{*})\epsilon^{ij}\epsilon^{KNM}\epsilon^{\alpha\beta\gamma}$$

$$\rightarrow (\chi u_{\text{MASS}}^{*}V_{\text{CKM}}^{\dagger})_{K\alpha}([d_{\text{MASS}}^{c}Y_{D}^{\text{diag}\dagger}]_{N\beta}[d_{\text{MASS}}^{*}]_{M\gamma})\epsilon^{KNM}\epsilon^{\alpha\beta\gamma},$$

$$\Gamma_{\chi}^{(1)} \sim \frac{(y_{t}y_{b})^{2}}{8\pi}(\frac{m_{\chi}}{\Lambda})^{4}(\frac{1}{16\pi^{2}}\frac{m_{t}\Lambda_{\text{QCD}}}{m_{W}^{2}})^{2}\frac{m_{\chi}}{16\pi^{2}}$$

$$= 6.6 \cdot 10^{-51}\text{GeV}(\frac{y_{b}}{0.024})^{2}(\frac{5.3 \cdot 10^{6}\text{TeV}}{\Lambda})^{4},$$

$$\Gamma_{\chi}^{(2)} \sim \frac{|y_{b}V_{ub}|^{2}}{8\pi}(\frac{m_{\chi}}{\Lambda})^{4}\frac{m_{\chi}}{16\pi^{2}} = 6.6 \cdot 10^{-51}\text{GeV}(\frac{y_{b}}{0.024})^{2}(\frac{4.8 \cdot 10^{7}\text{TeV}}{\Lambda})^{4}$$

$$\begin{split} &\Gamma_{\chi}^{(1)} \sim \frac{(y_t y_b)^2}{8\pi} \left(\frac{m_{\chi}}{\Lambda}\right)^4 \left(\frac{1}{16\pi^2} \frac{m_t \Lambda_{QCD}}{m_W^2}\right)^2 \frac{m_{\chi}}{16\pi^2} \\ &= 6.6 \cdot 10^{-51} \text{GeV} \left(\frac{y_b}{0.024}\right)^2 \left(\frac{5.3 \cdot 10^6 \text{TeV}}{\Lambda}\right)^4, \\ &\Gamma_{\chi}^{(2)} \sim \frac{|y_b V_{ub}|^2}{8\pi} \left(\frac{m_{\chi}}{\Lambda}\right)^4 \frac{m_{\chi}}{16\pi^2} = 6.6 \cdot 10^{-51} \text{GeV} \left(\frac{y_b}{0.024}\right)^2 \left(\frac{4.8 \cdot 10^7 \text{TeV}}{\Lambda}\right)^4 \end{split}$$

 Fermilab
 ADM Stability
 9/11/2014
 11 / 24

$$\begin{split} &\Gamma_{\chi}^{(1)} \sim \frac{(y_t y_b)^2}{8\pi} \left(\frac{m_{\chi}}{\Lambda}\right)^4 \left(\frac{1}{16\pi^2} \frac{m_t \Lambda_{\rm QCD}}{m_W^2}\right)^2 \frac{m_{\chi}}{16\pi^2} \\ &= 6.6 \cdot 10^{-51} \text{GeV} \left(\frac{y_b}{0.024}\right)^2 \left(\frac{5.3 \cdot 10^6 \text{TeV}}{\Lambda}\right)^4, \\ &\Gamma_{\chi}^{(2)} \sim \frac{|y_b V_{ub}|^2}{8\pi} \left(\frac{m_{\chi}}{\Lambda}\right)^4 \frac{m_{\chi}}{16\pi^2} = 6.6 \cdot 10^{-51} \text{GeV} \left(\frac{y_b}{0.024}\right)^2 \left(\frac{4.8 \cdot 10^7 \text{TeV}}{\Lambda}\right)^4 \end{split}$$

 Fermilab
 ADM Stability
 9/11/2014
 11 / 24

DM leading decays and EFT scale

	ADM :	model	MFV			FN		
B	Dim.	$m_{\chi} \; [{\rm GeV}]$	decay	τ [s]	$\Lambda \ [{ m TeV}]$	decay	τ [s]	$\Lambda~[{\rm TeV}]$
1	6	6.2	$\chi \to bus$	10^{26}	4.0×10^{6}	$\chi \to bus$	10^{26}	8.1×10^{8}
2	10	3.1	$\chi \to udsuds$	10^{26}	0.63	$\chi \to udsuds$	10^{26}	2.5
3	15	2.1	forbidden	∞	_	forbidden	∞	_

Table: Leading decay modes for the $B=\{1,2,3\}$ operators with MFV and FN flavor breaking. The scale Λ_* is calculated such that the lifetime of the DM $\tau\sim 10^{26}$ [s]. The decay of ADM with B=3 is kinematically forbidden.

DM leading decays and EFT scale

	ADM :	model	MFV			FN		
B	Dim.	$m_{\chi} \; [{\rm GeV}]$	decay	τ [s]	$\Lambda \ [{ m TeV}]$	decay	τ [s]	$\Lambda \ [{ m TeV}]$
1	6	6.2	$\chi \to bus$	10^{26}	4.0×10^6	$\chi \to bus$	10^{26}	8.1×10^{8}
2	10	3.1	$\chi \to udsuds$	10^{26}	0.63	$\chi \to udsuds$	10^{26}	2.5
3	15	2.1	forbidden	∞	_	forbidden	∞	-

Table: Leading decay modes for the $B=\{1,2,3\}$ operators with MFV and FN flavor breaking. The scale Λ_* is calculated such that the lifetime of the DM $\tau\sim 10^{26}$ [s]. The decay of ADM with B=3 is kinematically forbidden.

DM leading decays and EFT scale

	ADM	model	MFV			Anarchic		
B	Dim.	$m_{\chi} \; [{\rm GeV}]$	decay	τ [s]	$\Lambda \ [{ m TeV}]$	decay	τ [s]	$\Lambda~[{\rm TeV}]$
1	6	6.2	$\chi \to bus$	10^{26}	4.0×10^{6}			
2	10	3.1	$\chi \to udsuds$	10^{26}	0.63	$\chi \to uddudd$	10^{26}	7.3
3	15	2.1	forbidden	∞	-			

Table: Leading decay modes for the $B=\{1,2,3\}$ operators with MFV and FN flavor breaking. The scale Λ_* is calculated such that the lifetime of the DM $\tau\sim 10^{26}$ [s]. The decay of ADM with B=3 is kinematically forbidden.

ADM lifetime

Ackermann et al. [aXv:1205.6474]; Ibarra, Lamperstorfer, & Silk [aXv:1309.2570]; Aguilar et al. [Phys.Rev.Lett. 110, 141102 (2013)]; Covi, Grefe, Ibarra, & Tran [aXv:0912.3521]; Desai et al. [aXv:hep-ex/0404025]; Zhao & Zurek [aXv:1401.7664]

13 / 24

Mediator models

MFV model with scalar mediators

$$\mathcal{L}_{\text{INT}} \supset \kappa_{1}[\phi_{L}]_{\gamma}^{AB} \left(q_{A,\alpha i}^{*} q_{B,\beta j}^{*} \right) \epsilon^{ij} \epsilon^{\alpha\beta\gamma} + \kappa_{2}[\varphi_{L}]_{A}^{\alpha\beta} \left(q_{B,\alpha i}^{*} q_{C,\beta j}^{*} \right) \epsilon^{ij} \epsilon^{ABC}$$

$$+ \kappa_{3}[Y_{D}]_{X}^{A} [\phi_{R}]_{A,\alpha} \left(d_{Y,\beta}^{c} d_{Z,\gamma}^{c} \right) \epsilon^{\alpha\beta\gamma} \epsilon^{XYZ} + \kappa_{4} \chi^{\dagger} [\phi_{L}]_{\alpha}^{AB} [\varphi_{L}]_{A}^{\alpha\beta} [\phi_{R}]_{B,\beta}$$

$$+ h.c.$$

The gauge and global charge assignment for the three scalar mediators, ϕ_L , φ_L and ϕ_R , in the first UV completion toy model for which we also assume the MFV flavor breaking pattern

Field	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	G_F	$U(1)_{B-L}$
ϕ_L	3	1	1/3	(6, 1, 1)	2/3
$arphi_{L}$	6	1	1/3	$(\overline{3},1,1)$	2/3
ϕ_{R}	<u>3</u>	1	-2/3	$\left(\overline{\bf 3}, {\bf 1}, {\bf 1}\right)$	2/3

MFV model with scalar mediators

$$\mathcal{L}_{\text{INT}} \supset \kappa_{1}[\phi_{L}]_{\gamma}^{AB} \left(q_{A,\alpha i}^{*} q_{B,\beta j}^{*} \right) \epsilon^{ij} \epsilon^{\alpha\beta\gamma} + \kappa_{2} [\varphi_{L}]_{A}^{\alpha\beta} \left(q_{B,\alpha i}^{*} q_{C,\beta j}^{*} \right) \epsilon^{ij} \epsilon^{ABC}$$

$$+ \kappa_{3} [Y_{D}]_{X}^{A} [\phi_{R}]_{A,\alpha} \left(d_{Y,\beta}^{c} d_{Z,\gamma}^{c} \right) \epsilon^{\alpha\beta\gamma} \epsilon^{XYZ} + \kappa_{4} \chi^{\dagger} [\phi_{L}]_{\alpha}^{AB} [\varphi_{L}]_{A}^{\alpha\beta} [\phi_{R}]_{B,\beta}$$

$$+ h.c.$$

The gauge and global charge assignment for the three scalar mediators, ϕ_L , φ_L and ϕ_R , in the first UV completion toy model for which we also assume the MFV flavor breaking pattern

Field	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	G_F	$U(1)_{B-L}$
ϕ_{L}	3	1	1/3	(6, 1, 1)	2/3
$arphi_{L}$	6	1	1/3	$(\overline{3},1,1)$	2/3
ϕ_{R}	<u>3</u>	1	-2/3	$(\overline{\bf 3}, {\bf 1}, {\bf 1})$	2/3

MFV model with scalar mediators

$$\mathcal{L}_{\text{INT}} \supset \kappa_{1}[\phi_{L}]_{\gamma}^{AB} \left(q_{A,\alpha i}^{*} q_{B,\beta j}^{*} \right) \epsilon^{ij} \epsilon^{\alpha\beta\gamma} + \kappa_{2}[\varphi_{L}]_{A}^{\alpha\beta} \left(q_{B,\alpha i}^{*} q_{C,\beta j}^{*} \right) \epsilon^{ij} \epsilon^{ABC}$$

$$+ \kappa_{3}[Y_{D}]_{X}^{A} [\phi_{R}]_{A,\alpha} \left(d_{Y,\beta}^{c} d_{Z,\gamma}^{c} \right) \epsilon^{\alpha\beta\gamma} \epsilon^{XYZ} + \kappa_{4} \chi^{\dagger} [\phi_{L}]_{\alpha}^{AB} [\varphi_{L}]_{A}^{\alpha\beta} [\phi_{R}]_{B,\beta}$$

$$+ h.c.$$

The gauge and global charge assignment for the three scalar mediators, ϕ_L , φ_L and ϕ_R , in the first UV completion toy model for which we also assume the MFV flavor breaking pattern

Field	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	G_F	$U(1)_{B-L}$
ϕ_{L}	3	1	1/3	(6, 1, 1)	2/3
$arphi_{L}$	6	1	1/3	$(\overline{3},1,1)$	2/3
ϕ_{R}	<u>3</u>	1	-2/3	$(\overline{\bf 3}, {\bf 1}, {\bf 1})$	2/3

MFV model with scalar mediators

$$\mathcal{L}_{\text{INT}} \supset \kappa_{1}[\phi_{L}]_{\gamma}^{AB} \left(q_{A,\alpha i}^{*} q_{B,\beta j}^{*}\right) \epsilon^{ij} \epsilon^{\alpha\beta\gamma} + \kappa_{2}[\varphi_{L}]_{A}^{\alpha\beta} \left(q_{B,\alpha i}^{*} q_{C,\beta j}^{*}\right) \epsilon^{ij} \epsilon^{ABC}$$

$$+ \kappa_{3}[Y_{D}]_{X}^{A}[\phi_{R}]_{A,\alpha} \left(d_{Y,\beta}^{c} d_{Z,\gamma}^{c}\right) \epsilon^{\alpha\beta\gamma} \epsilon^{XYZ} + \kappa_{4} \chi^{\dagger} [\phi_{L}]_{A}^{AB} [\varphi_{L}]_{A}^{\alpha\beta} [\phi_{R}]_{B,\beta}$$

$$+ h.c.$$

FN model with scalar and fermionic mediators

$$\mathcal{L}_{\mathsf{INT}} \supset \! g_{q, \mathsf{AB}} \phi_{\gamma} \left(q_{\mathsf{A}, lpha i}^{*j} q_{\mathsf{B}, eta j}^{*k}
ight) \epsilon^{ij} \epsilon^{lpha eta \gamma} + g_{\mathsf{d}, \mathsf{A}} \phi^{*lpha} \left(d_{\mathsf{A}, lpha}^{\mathsf{c}} \, \psi
ight) + g_{\chi} \, \chi(\psi^{\mathsf{c}} \, \psi^{\mathsf{c}}) + h.c$$

Gauge and B-L charges of the mediators ϕ and ψ in the second UV model. We also assume FN flavor breaking pattern

Field	$SU(3)_C$	$SU(2)_L$	<i>U</i> (1) _Y	$U(1)_{B-L}$
$\overline{\phi}$	3	1	1/3	2/3
ψ	1	1	0	1

FN model with scalar and fermionic mediators

$$\mathcal{L}_{\mathsf{INT}} \supset g_{q,\mathsf{AB}} \phi_{\gamma} \left(q_{\mathsf{A},lpha i}^{*j} q_{\mathsf{B},eta j}^{*k}
ight) \epsilon^{ij} \epsilon^{lphaeta\gamma} + g_{\mathsf{d},\mathsf{A}} \phi^{*lpha} \left(d_{\mathsf{A},lpha}^{oldsymbol{c}} \, \psi
ight) + g_{\chi} \, \chi(\psi^{oldsymbol{c}} \, \psi^{oldsymbol{c}}) + h.c.$$

Flavor constraints

Mediators contribute to $\Delta_F = 2$ processes at the one loop level via

16/24

Flavor constraints

Mediators contribute to $\Delta_F = 2$ processes at the one loop level via

As in the SM, there is a GIM cancellation in these diagrams and the contribution is additionally suppressed by the internal quark Yukawa.

Flavor constraints

	MFV		FN	
	$\kappa_{1,2} <$	$m_{\phi_L, \varphi_L} >$	$g_{q,d} <$	$m_{\phi} >$
$K^0 - \bar{K}^0$	0.33	$2.9~{\rm TeV}$	0.63	$570~{\rm GeV}$
$B_d - \bar{B}_d$	1.3	$710~{\rm GeV}$	0.54	$1~{\rm TeV}$
$B_s - \bar{B}_s$	1.3	$780~{\rm GeV}$	0.59	$840~{\rm GeV}$
$D^0 - \bar{D}^0$	30	$34~{\rm GeV}$	4.3	$56~{\rm GeV}$

Table: The 95 % C.L. bounds on the MFV and FN mediator models from meson mixing. Taking $m_{\phi_L}=m_{\varphi_L}=m_{\phi}=1\text{TeV}$ and $\kappa_1=\kappa_2$ gives the upper bounds on the couplings in the 2nd column and 4th column for $g_q=g_d$. Taking $\kappa_{1,2}=g_{q,d}=1$ gives lower bounds on the mediator masses in the 3rd and 5th columns. The mass of the fermion in the FN model is fixed to $m_{\psi}=20$ GeV.

Flavor constraints - MFV mediator model

 Fermilab
 ADM Stability
 9/11/2014
 18 / 24

Flavor constraints - FN mediator model

Collider signatures: single and pair production

Collider signatures: paired dijets constraints

Search for New Physics in the Paired Dijet Mass Spectrum - CMS. [arXiv:1302.0531]

 Fermilab
 ADM Stability
 9/11/2014
 21 / 24

Collider signatures: 2b jets + MET

ightarrow The NDA decay length of ψ is given by

$$egin{split} c au(\psi o bbc) &\sim \left(g_q^2g_d^2\lambda^8\,rac{1}{8\pi}rac{1}{16\pi^2}rac{m_\psi^5}{m_\phi^4}
ight)^{-1} \ &\sim 30 ext{m}\left(rac{20\, ext{GeV}}{m_\psi}
ight)^5\left(rac{m_\phi}{750\, ext{GeV}}
ight)^4\left(rac{0.03}{g_qg_d}
ight)^2 \end{split}$$

Fermilab ADM Stability 9/11/2014 22 / 24

Collider signatures: 2b jets + MET

Constraints from sbottom pair production

Search for direct production of a pair of bottom squarks – CMS. [PAS-SUS-13-018]

 Fermilab
 ADM Stability
 9/11/2014
 23 / 24

Collider signatures: 2b jets + MET

Constraints from sbottom pair production

Search for direct production of a pair of bottom squarks – CMS. [PAS-SUS-13-018]

Summary & conclusions

- Showed that flavor symmetries can allow us to have a cosmologically stable ADM even if the DM is not charged under the flavor group
- The mediators between the visible and dark sectors can be at the TeV scale without giving rise to dangerous FCNCs
- The mediator models can have interesting signatures at the LHC

U(1) Froggatt-Nielsen¹ (FN) model

- \triangleright Spontaneously broken horizontal U(1) symmetry
- \triangleright Quarks carry horizontal charges under this U(1)
- ▷ E.g., horizontal charge assignment that gives phenomenologically satisfactory quark masses and CKM matrix elements²

$$H(q, d^{c}, u^{c}) \Rightarrow \begin{array}{c} 1 & 2 & 3 \\ q & 3 & 2 & 0 \\ 3 & 2 & 2 \\ u^{c} & 3 & 1 & 0 \end{array}$$

 \triangleright Wilson coefficients $\mathcal{C} = \lambda^{|\sum_i H_i|}$, where $\lambda = 0.2$

Fermilab ADM Stability 9/11/2014 25 / 24

¹Froggatt & Nielsen [Nucl.Phys. B147 (1979) 277]

²Leurer, Nir & Seiberg [hep-ph/9310320], [hep-ph/9212278]